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ABSTRACT

.. The steady, two-dimensional flow of an incompressible fluid

over a backward-facing step is computed by a finite difference

procedure. The flow depends upon the Reynolds number, Re, based

on the inlet flow conditions, and on the dimensionless step

height, s. Spatially resolved, accurate solutions are obtained

for a range of s for Reynolds numbers as high as 350. The pri- ,

mary flow feature is a steady separated region immediately in back

of the step. Additionally, a secondary separated vortex can

appear on the top, straight wall of the channel. A region is

delineated in the (s,Re) plane where laminar separation occurs on

the top surface. It is concluded that there is no flow reversal

on the top surface if Re is less than about 200, regardless of the p

step height s. The occurrence of this secondary vortex is

associated with laminar separation of the top boundary layer pro-

duced by an adverse pressure gradient along the top of the

channel. '
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1. IntroductIon

The flow field of an incompressible fluid over a backward-facing step

exhibits many of the nonlinear features which are intrinsic to viscous fluid

motion. Because of this and the frequent occurrence of a sudden expansion in

engineering applications, there have been several experimental and theoretical

studies of this flow situation. The recent paper by Armaly, Durst, Pereira &

Schonung (1983) includes a comprehensive literature review for the problem.

Figure 1 is a sketch of the geometry and the possible separated flow struc-

ture. The step height is s (the superscript refers to a dimensional

quantity) while the gap size is 1*; thus the expansion ratio is 1: (l+s*/l*).

Flow separation occurs at the tip of the step, and the primary eddy reattaches

at a distance xi from the inlet. This distance is a function of the

expansion ratio and the Reynolds number Re. At sufficiently large Re,
*

secondary separation on the top boundary takes place (see Figure 1) at x2 .

and the flow reattaches at x3*. These phenomena were observed by

Armaly et al. for an expansion ratio of 1:1.94 and confirmed by the

computation of Mansour, Kim & Mon (1983), who compute the flow corresponding

to an expansion ratio 1: 2.

While the major flow reversal originates due to the sharp edge of the

step, it is evident that the top separation comes about, at least in part,

- because of the adverse pressure gradient associated with the expanding flow

* created by the dividing streamline (which reattaches at xl*). In addition,

the Reynolds number of the flow has to be sufficiently large to bring about a

" boundary layer structure with an associated decrease in the skin friction,

which together with the increasing pressure leads to top separation at x2

(cf. Brown & Stewartson 1969). However, it should be noted that the adverse
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pressure gradient will get weaker with increasing Re as xl* increases with

Re. Thus, for a given expansion ratio, it may be theorized that top separa-

tion, if any, will be confined to a finite range (above zero) of Re.

At sufficiently high Re, Armaly et al. (1983) observe and compute yet

another flow separation and reattachment on the lower surface at x4  and x5

(Figure 1). The discrepancy between their experimental and numerical results

however was large. This is due to the large inaccuracy and false diffusion,

associated with high Re computations, of the upwind scheme they used. The

complicated picture of the flow field sketched in Figure 1, coupled with the

fact that the physical model extends to infinity in the flow direction,

clearly necessitate the use of a highly nonuniform computational mesh to ade-

quately resolve the different regions of sharp velocity gradients. Such a mesh

can be designed after these regions have been identified in exploratory compu-

tations. This is the approach we take in this work. However, it is recog-

nized that some form of an adaptive grid refinement may be an attractive and

computationally more effective alternative (cf. Berger & Oliger 1984).

The objectives of the present work were to investigate the features of

the flow for a wide range of s than is presently available, with particular

attention paid to the causes and details of the secondary separation on the

top surface.
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2. Mathematical model and solution technique

The nondimensional Navier-Stokes equations are

V • v - 0, (la) 7 "_7

2
V (vv) -Vp + Vv/Re. (1b)

The length and velocity scales are, respectively, 1 and U, where U is

the average flow velocity at the inlet. Thus the Reynolds number Re is Ul*/v

where v is the kinematic viscosity. Note that this definition of Re is

different from that of Armaly et al.. In the usual two-dimensional Cartesian

notation, the boundary conditions are

(0,0) ; oC y s,
v(O,y)- (2a)

(6(y-s)(l+s-y),O); s -c y 1 +s, :::...

Sv(,y) = 0, (2b)

v(x,O) = 0, (2c)

v(x,1+s) = 0. (2d)

Here s is the nondimensional step length (s*/l*) and we have assumed a fully

developed parabolic velocity profile at the inlet.

Finite difference solutions of equations (1-2) are computed on the stag-

gered grid shown in Figure 2. The computational region is divided into S
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rectangular control volumes with the grid points located at the geometric cen-

ters of these cells. Additional boundary points are included where the

boundary conditions (2) are imposed. The number of the x grid points (control

volumes) are NX(NX-2) of which MX control volumes are allocated to a

distance xL -1 . Similarly, the number of y grid points (control volumes)

are NY(NY-2) of which MY control volumes are allocated to the gap. As shown

in Figure 2, there are two uniform grids in the y direction; the grid covering

the primary separated region is also uniform to a distance xL . The grid

increases gradually in the x direction (for a total of NX-2-MX control

volumes) to a length nxL. We set n at 3 which was found to be sufficient by

Armaly et al. (1983) and Mansour et al. (1983).

The details of the difference scheme and the iteration procedure we use

to solve the difference equations are described by Patankar (1981). The

finite difference equations are obtained by integrating equations (1) over the

control volumes with assumed local linear variations in all of the primitive

variables. The convective and diffusive fluxes are approximated by a power-

law scheme. A line-by-line iteration to solve the discretized equations is

used with one iteration comprising four double sweeps of the field. Under-

relaxation in solving for u and v was required; a relaxation factor of

0.85 was used throughout. Solutions were constructed on a number of non-

uniform grids. In Table 1 we list the parameters of 8 such grids together

with the VAX 11/780 computer time requirement for one iteration. Convergence

was assumed when the maximum change in u or v over ore iteration was less

than 10"5 . About 300 iterations were needed for convergence.
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3. Numerica1 results

a. Numerical accuracy

Solutions of equs. (1-2) were found for a range of (s,Re). Before a

specific run, an estimate of x, was made in order to ensure a sufficiently

long computational region. In Table I we list some of the important details

of the flow fields and the particular grid on which that solution is

obtained. In Table II is the stream function and x1 , x2 and x3 are the

values of x where u, computed on the grid line just adjacent to a wall,

changes sign. In order to be consistent with previous work, we have expressed

these distances normalized with respect to the step height, s.

A general observation from Table II is that finer grids than those used

here are needed to produce accurate solutions at the larger values of s or

Re. Indeed, the length of the primary bubble x, increases with Re at any

value of s, at sufficiently low values of Re, as expected. Armaly et al.

(1983) report that for s * 0.94, x1 begins to decrease as Re increases above

200. Mansour et al. (1983), for s 1 1, show that this is due to insufficient

numerical resolution. Figure 3 shows the dependence of x1 on Re. We have

added our results to those of previous workers, who present results only in

graphical form. It is evident that we need a finer mesh than M7 to resolve

flow fields above Re = 250 for this range of s. It can also be learned from

Table II that if a decrease of x1 with Re occurs with results from some grid,

results with finer grids show that the reverse is correct. Thus the decrease

of x, with Re reported by Armaly et al. is clearly due to insufficient

resolution. It is also interesting that our 80x50 nonuniform mesh apparently

gives results for Re < 250 which are comparable to those of Mansour et al. who

used a 130K130 uniform mesh.
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Separation on the top surface, should it occur, may be missed if the grid

is not sufficiently fine in the y direction. This is clear from the results

listed for s = 0.94 and Re = 200 where results with M3 (30 y-grid points) show

no flow reversal while those with M4 (40 y-grid points) indicate top boundary

layer separation. Even though the results are not as accurate as we would

like to report, it is quite clear that we can state whether the top bubble

exists but cannot report more than 2 place accuracy for x2 and x3.

In summary, the details of the primary vortex are resolved to an accuracy

of 1-2%, and those of the secondary vortex to approximately 10%.

b. Primary Vortex

Figure 3 gives our main results on the characteristics of the

primary vortex, which for the range of s covered in this study, is of a

similar nature to that reported by Armaly et al. and Mansour et al. Our

computations do not extend to a sufficiently high Reynolds number to suggest

the nature of the eddy growth as Re + -. While the experiments of

Armaly et al. and theoretical models (see Acrivos & Schrader (1982) for a

discussion) suggest that x, - Re as Re + -, no numerical results to date are

sufficiently accurate at high Re to allow the question to be unequivocally

answered. We do note, however, that since our mesh M4 utilizes a resolution

in the primary vortex of comparable quality to the 130x13O uniform mesh of

Monsour et al ., and since M4 is of insufficient accuracy for Re > 250, the

decrease in the rate of growth of x, observed by the latter authors is of

questionable validity.

-

:: .- . .-.- -. .-. -..*. . . . . . . . . . . . . . . ..-..-..-..-. .



* -"-..

C. Secondary vortex

Armaly et al. were evidently the first workers to conduct a careful

study of the secondary vortex. However their results are for a single value

of s, and we became interested in the dependence of the nature and occurrence

of secondary separation on this parameter. Our main results are shown in

Figure 4, where we plot the approximate locus of the curve in the Re,s plane O

separating the regions in which the secondary vortex does and does not

occur. An interesting feature of this diagram is the double-nosed nature of

the curve near s = 1.0. .

This figure may be understood by first interpreting the limits s - 0,..

s = 0 corresponds to channel flow which evidently has no steady separated

regions, regardless of the Reynolds number. Thus the locus cannot intercept

the line s = 0.0, although it possibly can become tangent to it as Re +

The other limit, s -, corresponds to a wall jet issuing into stagnant

surroundings, and again, we have no evidence that steady separated flows exist.-. -

in that case as well.

As we argued in the introduction, the occurrence of the secondary vortex
S

is most probably a boundary layer phenomenon which will occur, for finite s,

for a sufficiently large Reynolds number. The pressure field associated with

the deceleration of the expanding flow between the top wall and the zero

streamline connecting x, with the lip of the step will, at high Re, contain a

region of adverse pressure gradient. As the decelerating boundary layer along

the top wall is acted upon by viscosity, it will eventually separate, causing

a flow reversal and a diminishing of the adverse pressure gradient due to the

growth of the secondary vortex.
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All of our available numerical evidence is in support of this interpreta-

tion. First, we note that in all cases, the point of separation x2 is

upstream of the reattachment point, xj, of the primary vortex. This is

consistent with the above argument since, for x >> x1 , the pressure gradient

becomes favorable as the flow relaxes to a plane-Poiseuille flow. Second, we

can examine the pressure profile on the top wall. Shown in Figure 5 is a

series of profiles showing the pressure gradient along the top wall as a func-

tion of downstream distance. These particular profiles are for s = 0.8, but

other values of s give analogous results. As can be seen, the pressure gra-

dient becomes unfavorable (positive) a short distance from the step. As the

Reynolds number increases, the length of the region of unfavorable gradient

L
increases until laminar separation occurs on the top face. This is

accompanied by the occurrence of two inflection points in the pressure

gradient. Thus comparing Figures 4 and 5, we see that for s = 0.8

Re = 275 is the first case for which two inflection points occur. Above

Re = 275, the region of decreasing pressure gradient grows, as does the length

of the region between inflection points. This latter behavior is due to the

growth of the secondary vortex. These points are emphasized in Figure 5, where

for Re = 325 the quantities xI, x2 , x3 are marked on the curve. The first

inflection occurs at x - x2 , while the second occurs slightly upstream of

x3. The strong correlation between the pressure gradient and the appearance

and disappearance of the secondary vortex is further illustrated by examining

the pressure gradient for Re = 225 as a function of s. As can be seen from

Figure 4, such a series of profiles traverses regions of separated and

unseparated flow twice as s is increased from 0.85 to 1.10. The family of

pressure gradient curves is shown in Figure 6, and as can be seen, there is an

8 -p!
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excellent correlation between the double inflection points in the pressure

gradient and the occurrence of top separation.

From these studies, we may safely conclude that the occurrence of the

secondary vortex is a laminar separation of the boundary layer on the top wall

due to the adverse pressure gradient set up by the deceleration of the forward

moving fluid, which in turn is due to the growth of the primary vortex with

Reynolds number.

Some of the detailed features of Figure 4 remain unexplained to us. The

occurrence of the nose at s = 1.05 may be partially understood by examination

of the dependence of x1 on s at a fixed Reynolds number. Figure 7 shows a

number of such curves, and as can be seen, in all cases in which there is to .

separation ( Re P 200 ), x1 is a local minimum for s - 1.05. (The same

statement holds true if the quantity xl/s,as opposed to x1 , is examined.)

This indicates that the unfavorable pressure would be expected to be a maximum

for s - 1.05, leading to separation at the lowest value of Re for which it

occurs. The other features of Figure 4 such as the nose at x1 = 0.94, would

appear to depend on more subtle details of the flow. L

Finally, we note that for s - 0(1), the secondary vortex cannot grow to

be very deep, although it apparently can grow to be quite long. The reason

for this is simply that should it penetrate any substantial depth into the

channel, it would modify and possibly eliminate the adverse pressure gradient

which is responsible for its occurrence. By similar reasoning, the tertiary

vortex observed by Armaly et a.l. is probably a turbulent phenomena, at least

for s - 0(1), since the secondary vortex never grows deep enough to cause a

secondary region of decelerating flow, with another associated adverse

pressure gradient.
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Table I
Mesh Definition

Mesh NX NY MX MY CPU I

ml 30 20 15 9 3.49
M2 40 30 20 14 7.31
143 50 30 25 14 9.30
M44 60 40 30 19 15.34
145 70 40 35 19 18.03
M68 80 40 40 19 21.41
M60 80 40 35 19 21.41
M47 80 50 40 24 32.80

in VAX 11/780 (UNIX) seconds per iteration. -
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Table II
Variation of results with computational mesh . .

s Re XL Mesh -lO04 ,m ~ xc/S X2 /S X 3 /S

0.7 300 7.5 M4 4.37 10.11

325 7.5 M4 4.36 10.61 10.01 11.58
M5 4.34 10.66 10.05 11.80
M8 4.32 10.73 10.18 11.86

350 8.5 M4 4.37 10.92 9.52 13.08
M5 4.35 11.04 9.68 13.25
Me 4.33 11.12 9.81 13.35

0.75 275 7.5 M4 4.80 9.69

300 7.5 N4 4.79 10.21 9.35 11.51
MS 4.77 10.26 9.40 11.69
Me 4.74 10.32 9.50 11.77

325 8.0 M4 4.79 10.55 9.04 12.95
MS 4.77 10.66 9.19 13.10
M6 4.75 10.74 9.30 13.21

0.80 250 7.5 M4 6.22 9.22
M5 5.19 9.29
Me 5.17 9.33

275 8.0 144 5.23 9.71 8.81 11.08
M5 5.20 9.80 8.94 11.19
M6 5.18 9.86 9.03 11.28

300 8.5 M4 5.24 10.11 8.61 12.45
M5 6.21 10.22 8.75 12.81
M6 5.18 10.29 8.85 12.74

325 9.0 M4 5.25 10.37 8.51 13.54
MG 5.22 10.51 8.68 13.75
m6 5.19 10.61 8.78 13.91

p
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Table 11 (continued)

s Re XL Mesh -104~m x/ x /S x/

0.85 225 9.0 M44 5.82 8.64
M5 5.79 8.68
me8 5.76 8.72

250 9.5 M4 5.84 9.12 8.02 10.63
5.80 9.18 8.07 10.84
5.77 9.23 8.13 10.98

275 10.0 M44 5.85 9.47 7.86 11.91
M45 5.81 9.55 7.95 12.15
MG 5.78 9.62 8.03 12.32

300 10.0 144 5.87 9.65 7.74 13.01
10.5 145 5.84 9.74 7.84 13.19
10.0 146 5.80 9.84 7.95 13.40

0.9 175 8.0 144 6.25 7.45
M5 6.21 .7.49
M6 8.18 7.52

200 9.0 144 8.28 8.09
M45 6.24 8.13
M6 6.21 8.17

225 9.5 144 6.30 8.64 7.77 9.77 -

145 6.26 8.69 7.81 9.98
M6 8.22 8.73 7.85 10.12

14
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Table 11 (continued)

s Re xL  Mesh -1O0,min  xI/s x2/s x3/S

0.94 50 3.0 M1 5.58 3.16
M2 5.57 3.17

100 3.5 MI. 6.53 5.18
3.5 M2 6.39 5.12
5.0 M2 6.49 5.03

143 6.41 5.07
M4 6.35 5.12
M5 6.30 5.14

150 4.0 MI 6.77 6.35
142 6.60 6.40

6.5 12 6.71 6.67
M3 6.63 6.71
M4 6.51 6.80
M5 6.46 6.83
M6 6.42 6.85

175 8.0 M4 6.62 7.50

200 4.5 MI 6.89 6.44
142 6.68 7.92

8.0 M2 6.77 8.00
M3 6.69 8.04
M4 6.62 8.14 7.86 8.64
MS 6.58 8.18 7.84 8.84
146 6.55 8.22 7.86 8.96
M7 6.54 8.25 7.87 9.04

250 9.5 M3 6.76 8.83 7.22 11.09
M4 6.67 8.98 7.37 11.64
M5 6.63 9.05 7.44 11.84
146 6.59 9.11 7.52 11.99
147 6.58 9.17 7.57 12.10

300 11.0 M3 7.91 8.77 6.80 12.23
M4 7.20 8.94 6.98 13.01
M5 6.85 9.06 7.11 13.36
M6 6.66 9.24 7.26 13.65
N7 6.64 9.33 7.36 13.86

15
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Table II (continued)

s Re XL Mesh **10Omt x /S x /S x /S

0.96 175 8.0 M4 6.68 7.55
M5 6.63 7.58
MO 6.e0 7.62

200 9.0 M4 6.70 8.20
M5 6.66 8.23
M6 6.63 8.27

225 9.5 M4 6.70 8.74 7.64 10.25
M5 6.67 8.77 7.66 10.45
M6 6.63 8.82 7.72 10.58

250 8.0 M4 6.64 9.16 7.59 11.82
M5 6.59 9.27 7.72 11.98
me 8.57 9.34 7.80 12.10

300 9.0 M4 6.67 9.43 7.48 13.51
M5 6.63 9.54 7.58 13.79
me 6.60 9.67 7.70 14.02

350 9.5 M44 7.76 9.10 7.04 14.11
M5 7.30 9.25 7.18 14.54
me 6.96 9.47 7.37 15.25

1.0 175 8.0 M4 6.50 7.70
8.0 145 8.45 7.74
8.0 MB 6.42 7.78

200 9.0 M4 6.51 8.46
9.0 MS 6.47 8.61
9.0 me 6.44 8.55

225 9.5 M4 6.47 9.17
9.5 MS 6.43 9.23
9.5 M6 6.40 9.28

250 9.5 M4 6.38 9.86 9.24 10.54
10.0 MS 6.39 9.88 9.18 10.77
10.0 MB 6.36 9.94 9.30 10.86
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Table [I (continued)

s RXL Mesh 10OO0 ,f x /S x /S x /S

1.05 150 8.0 M4 7.54 6.89

175 8.0 M4 7.54 7.61

200 9. M4 7.56 8.17 7.06 9.78

225 9. M4 7.55 8.55 7.04 11.14

250 9.0 M4 7.56 8.69 6.97 12.12

275 12.0 M4 8.78 8.42 6.60 12.26
MS 8.31 8.51 6.70 12.60
M6 7.92 8.64 6.81 12.88

300 12.5 M4 9.76 8.21 6.31 12.42
MS 9.26 8.31 6.43 12.82
M6 8.86 8.46 6.57 13.19

1.1 175 8.0 M4 6.74 8.03
t45 6.69 8.08
me* 6.86 8.06
M7 8.71. 8.10

200 9.0 M4 6.73 8.90
M5 6.69 8.95
M60 6.86 8.90
M7 6.72 8.97

225 9.5 M4 6.64 9.77
MS 6.60 9.84
moo 6.78 9.74
M7 6.84 9.84

250 10.0 M8 6.56 10.61

325 12.5 M4 11.9 7.65 5.78 12.14
M5 11.1 7.80 6.94 12.65
M6 10.7 8.06 8.17 13.16

360 13.0 M4 12.7 7.42 5.51 11.90
M5 12.2 7.65 5.65 12.41
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FIGURE CAPTIONS

Figure 1. Sketch of the flow field with regions of flow
reversal identified.

Figure 2. The computational nonuniform, staggered grid. There
are NX, NY mesh points in the x,y directions,
respectively.

Figure 3. The length of the primary vortex, xl/s, as a
function of Reynolds number.

Figure 4. Onset of laminar separation on the top surface. The
crosses stand for pairs of (s,Re) where there is no
flow reversal while the circles denote separation.

Figure 5. Pressure gradient as a function of downstream
distance: s - 0.8 with Re as a parameter. The
curves have been shifted in x for clarity.

Figure 6. Pressure gradient as a function of downstream
distance: Re - 225 with s as a parameter.

Figure 7. Primary separation distance x1 as a function of step
height s, with Re as a parameter. The error bars
denote the maximum error due to the variation of
grid sizes among the data plotted.
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